
Angular momentum convergence of Korringa-Kohn-Rostoker Green's function methods

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys.: Condens. Matter 13 3073

(http://iopscience.iop.org/0953-8984/13/13/318)

Download details:

IP Address: 171.66.16.226

The article was downloaded on 16/05/2010 at 11:45

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/13/13
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 13 (2001) 3073–3081 www.iop.org/Journals/cm PII: S0953-8984(01)19124-1

Angular momentum convergence of
Korringa–Kohn–Rostoker Green’s function methods

Nassrin Y Moghadam1, G M Stocks1, X-G Zhang1, D M C Nicholson1,
W A Shelton1, Yang Wang2 and J S Faulkner3

1 Oak Ridge National Laboratory, Oak Ridge, TN 37831-6114, USA
2 Pittsburgh Supercomputing Center, 4400 5th Avenue, Pittsburgh, PA 15213, USA
3 Florida Atlantic University, Boca Raton, FL 33431, USA

Received 17 November 2000, in final form 19 February 2001

Abstract
The convergence of multiple-scattering-theory-based electronic structure
methods (e.g. the Korringa–Kohn–Rostoker (KKR) band theory method), is
determined by lmax , the maximum value of the angular momentum quantum
number l. It has been generally assumed that lmax = 3 or 4 is sufficient to ensure
a converged ground state and other properties. Using the locally self-consistent
multiple-scattering method, which facilitates the use of very high values of
lmax , it is shown that the convergence of KKR Green’s function methods is
much slower than previously supposed, even when spherical approximations to
the crystal potential are used. Calculations for Cu using 3 � lmax � 16 indicate
that the total energy is converged to within ∼0.04 mRyd at lmax = 12. For both
face-centred cubic and body-centred cubic structures, the largest error in the
total energy occurs at lmax = 4; lmax = 8 gives total energies, bulk moduli, and
lattice constants that are converged to accuracies of 0.1 mRyd, 0.1 Mbar, and
0.002 Bohr respectively.

1. Introduction

Multiple-scattering theory (MST) was first applied to electronic structure calculations by
Korringa [1] in a theory now known as the Korringa–Kohn–Rostoker (KKR) band theory
method [1, 2]. Recast in terms of Green’s function (GF) techniques, MST now underpins
electronic structure methods for a wide variety of systems (e.g. ordered metals, substitutional
alloys, surfaces, interfaces, and multi-layers) and physical properties (e.g. transport), as well
as computer codes used for the interpretation of spectroscopies (e.g. LEED, EELS, photo-
emission, and soft-x-ray) [3]. MST–GF techniques also underpin recently developed order-N
methods for treating large systems [4–6] and a new full-potential version of the KKR band-
structure method [7,8] that yields results of an accuracy comparable to that of the all-electron
FLAPW method.

In MST–GF calculations the primary convergence parameter is the cut-off lmax used
in angular momentum expansions of the Green’s function, scattering t-matrix, and wave
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functions. In the past, KKR calculations have typically been truncated at lmax = 3 or 4.
There are several reasons for this. Firstly, the scattering phase shifts rapidly approach zero
beyond the first few l-values (l > 1 for simple metals, l > 2 for transition metals, and l > 3 for
f-electron elements) and thus do not contribute directly to the scattering. Secondly, utilizing
higher l-values makes calculations so computationally demanding that they were not generally
carried out. Finally, calculations with lmax � 4 have proved to be quite successful in explaining
a wide variety of experimental results.

Despite the venerability and widespread use of MST–GF techniques, with a few notable
exceptions, scant attention has been paid to their convergence properties with respect to lmax .
The accuracy and convergence properties of MST, in the limit of lmax → ∞, have been
investigated by Butler [9] who performed calculations up to lmax ∼ 60. He concluded that
MST can be made arbitrarily accurate at some lmax . This study, however, is for the case of two
muffin-tin scatterers, and more importantly, a two-centre expansion is used to ensure continuity
at the boundaries between the wave functions inside and outside the cell. Unfortunately, these
conclusions do not carry over to the present study, where the more conventional single-centre
expansion is used. A more relevant study, that uses single-centre expansion, was carried out
by Zeller et al [7], in which the full-potential tight-binding (TB) KKR method is used. They
discuss the accuracy and convergence of the method and show numerical results for elemental
copper and aluminium for values of lmax = 4, 6, and 8. We will discuss these results in more
detail in the discussion section.

In this paper we present convergence test results that show that MST–GF methods converge
more slowly than has been recognized even for spherical approximations to the cell potentials
such as the muffin-tin (MT) approximation and the atomic sphere approximation (ASA). The
calculations are facilitated by use of the locally self-consistent multiple-scattering (LSMS)
method [4, 5]. The LSMS method is an order-N , real-space, MST–GF method originally
developed for treating large systems. The particular feature of the LSMS method that allows
accurate examination of l-convergence is the facility of using different lmax-values on different
shells of atoms within the local regions surrounding each atom from which scattering is retained.

How the angular momentum cut-off enters MST–GF methods can most easily be seen
by considering the site-diagonal single-particle Green’s function. In the form advocated by
Faulkner and Stocks [10] it is given by

G(r, r′; ε) =
∑
L,L′
ZnL(r; ε)τnnLL′(ε)Z

n
L′(r′; ε)−

∑
L

ZnL(r; ε)J nL(r′; ε). (1)

The functions ZnL(r; ε) and J nL(r; ε) are solutions of the Schrödinger equation in the nth
Wigner–Seitz cell, and the points r and r′ are in that cell. In real space, the elements of the
scattering path operator τ , τnmLL′ [11], are obtained by taking the inverse of the matrix M:

τnmLL′(ε) = [M(ε)]−1|nmLL′ (2)

whose general elementsMnm
LL′(ε) are given by

Mnm
LL′(ε) = mnLL′(ε)δnm − gnmLL′(ε). (3)

The superscripts refer to the cells centred at the lattice sites Rn and Rm and the subscripts are a
combination of the angular and azimuthal quantum numbers l, m. The matrix mn is the inverse
of the scattering t-matrix for the atom on site n, and the elements of g(ε) are the propagators
for electrons in free space. For the special case of a one-atom-per-unit-cell periodic solid, the
corresponding k-space expressions take the form [12]

τnmLL′(ε) = 1

�BZ

∫
dk exp(ik · Rnm)τ (k; ε)|LL′ (4)
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and

τ−1(k; ε)|LL′ = MLL′(k; ε) = mLL′(ε)− gLL′(k; ε) (5)

where the integration is over the Brillouin zone of volume�BZ . In the above, Rnm = Rm−Rn.
Clearly, l-truncation of the Green’s function (1) enters in several places. Firstly, through

truncation of the KKR matrix (3), the inverse of which yields the scattering path matrix (2).
Secondly, through the truncation of the single-site wave functions Z(r′; ε) and J (r′; ε). The
l-truncation, in turn, affects the cell densities of states n(ε) and the charge density ρ(r) through

n(ε) = − 1

π
Im

∫
�WS

G(r, r, ε) dr (6)

and

ρ(r) = − 1

π
Im

∫ εF

−∞
G(r, r, ε) dε (7)

where �WS is the volume of the Wigner–Seitz cell, and εF is the Fermi energy. Finally the
positioning of the Fermi energy is affected because it is determined from the condition

N (εF ) = Zval (8)

where Zval is the valence charge, and the integrated DOS, N (ε), is given by

N (ε) =
∫ ε

εbottom

n(ε′) dε′ (9)

where εbottom denotes the bottom of the band. As will become clear later, it is in positioning
the Fermi energy where l-truncation plays the largest role.

There is a way to reformulate the expression for the integrated density of states so that it
will converge more rapidly in l. This requires the use of the Lloyd formula [13]

N (ε) = N 0(ε) +
1

Nπ
Im ln det M(ε) (10)

where N 0(ε) is the integrated DOS for free electrons and N is the number of atoms in the
system. The Lloyd formula has the advantage that it yields the integrated DOS directly. It has
the disadvantage that the charge obtained by integrating the Green’s function over energies
below the chemical potential, as determined by the Lloyd formula, will not have the correct
integrated number of electrons. For finite systems or defects of finite extent, this discrepancy is
of little consequence. For infinite systems, the charge discrepancy must be dealt with because
it results in an infinite contribution to the Coulomb energy. Furthermore, the Lloyd formula
cannot be applied locally to determine the integrated density on a site in a way that parallels the
single-site density of states obtained from the Green’s function. Thus, the angular momentum
convergence of the Green’s function is necessary for most MST calculations.

2. Computational techniques

Although the systems that are treated in this paper are metals for which the electronic structure
is normally obtained using band theory, the l-convergence can also be studied rather efficiently
using a technique that had its origin in the LSMS method [4, 5]. The feature of the LSMS
method that greatly facilitates study of the angular momentum convergence is the manner in
which the KKR matrix is constructed. When calculating the Green’s function for a particular
site n, only scattering from a finite number of surrounding atoms is retained. In this case

τ (ε)|nn� = [m(ε)− g(ε)]−1|nn� (11)
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where τ , m, and g are matrices in both angular momentum and site index, and � denotes the
number of atoms retained in the region around the atom in question which is referred to as the
local interaction zone (LIZ). This procedure is used for each of the atoms in the system. For a
system in which all of the atoms are the same, the electronic states need to be calculated at the
centre of only one LIZ. Figure 1 shows a supercell withN atoms. The LIZ contains nine atoms
(� = 9): one at the centre, four on the first-neighbour shell, and four on the second-neighbour
shell; atoms outside the LIZ are shaded.

Figure 1. A supercell with N atoms. The
atoms outside the local interaction zone (LIZ)
are shaded. The LIZ contains nine atoms
(� = 9). The KKR matrix is constructed by
putting lmax = 3 on the centre and on the first-
neighbour shell. lmax = 2 is put on the second-
neighbour shell.

The dimensions of the block matrices that make up the KKR matrix are determined by
the number of atoms on a given shell and the angular momentum cut-off on that shell. As
the picture indicates, different ls can be put on different shells within the LIZ. To investigate
convergence of the angular momentum in such system, it will be sufficient to vary the angular
momentum cut-off only at the centre and first-neighbour shell. The lmax for the remaining
shells within the LIZ need not change. This will allow electronic structure calculations at large
l with modest additional computational cost. The convergence properties of the LSMS method
with respect to the lmax retained on the outer shells of the LIZ is shown in table 1. Clearly
lmax = 3 on the second-neighbour shell is sufficient to ensure <0.02 mRyd accuracy. For the
case in question, previous studies [5] have shown that for the third shell and beyond, lmax = 2
is sufficient to ensure a similar convergence.

Table 1. Convergence of the LSMS method with respect to the lmax retained on the shells within
the LIZ. Calculations are for the fcc Cu at a = 6.76 Bohr using the MT approximation. � = 87
atoms (central site plus six neighbour shells).

lmax on shell
Total energy

0 1 2 3 4 5 6 + 3275 (Ryd)

4 3 3 2 2 2 2 −0.76993613
4 4 3 2 2 2 2 −0.77152820
4 4 4 2 2 2 2 −0.77154703
8 3 3 2 2 2 2 −0.76207045
8 8 3 2 2 2 2 −0.76428718
8 8 8 2 2 2 2 −0.76430975
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3. Results

In the following, self-consistent-field (SCF) total-energy calculations are carried out for
metallic copper in the face-centred cubic (fcc) and hypothetical body-centred cubic (bcc)
structures. The choice � = 87 (89) is adequate to obtain better than 0.5 mRyd accuracy for
the total energy for fcc (bcc) copper [5]; this corresponds to the central site plus six (seven)
neighbour shells. Keeping in mind the previous discussion, only lmax for atoms at the centre
and on the first-neighbour shell are varied. The lmax-values for the second and remaining shells
are held fixed at 3 and 2 respectively.

To illustrate the convergence properties, we study the error in the total energy,  Etot ,
Fermi energy,  εF , and integrated density of states,  N . Calculations having lmax = 3 on
the central site and first-neighbour shell are used as references. Specifically, Etot , εF , and
 N are defined as

 Etot = Elmaxtot − Elmax=3
tot

 εF = εlmaxF − εlmax=3
F

 N = N lmax (ε
lmax=3
F )− N lmax=3(ε

lmax=3
F ) = N lmax (ε

lmax=3
F )− Zval.

(12)

In these equations Elmaxtot is the total energy calculated with l = lmax on the central and first-
neighbour sites, Elmax=3

tot is the total energy calculated with lmax = 3 on those sites, and εlmaxF

and εlmax=3
F are their corresponding Fermi energies. N lmax (ε

lmax=3
F ) is the integrated density of

states calculated at lmax while the Fermi energy is kept fixed at εlmax=3
F .

Figure 2 shows the convergence behaviour of  Etot ,  εF , and  N for fcc Cu having a
lattice parameter a = 6.76 Bohr, � = 87, and using the MT approximation. From this figure
it can be seen that  Etot and  εF decrease by several mRyd from lmax = 3 to 4 and increase
on the same scale from lmax = 4 to 8. For lmax > 8 the convergence levels off and calculations
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Figure 2. Convergence properties of  Etot ,  εF , and  N as functions of the maximum angular
momentum cut-off lmax . Calculations for lmax = 3 are used as a reference. The results are for fcc
Cu, a = 6.76 Bohr, the MT approximation, and � = 87.
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with lmax = 8 (12) are converged to within 0.1 (0.02) mRyd of lmax = 16.  N exhibits
opposite behaviour. It increases from lmax = 3 to 4, and decreases sharply for 4 � lmax � 8.
Beyond lmax = 8 the error is less than 0.0004 electrons. From the previous discussion it is
clear that the error in the integrated DOS is the driver. This error results in a misplacement of
the Fermi energy which, in turn, results in the error in the total energy.

Studies of bcc Cu (a = 5.37 Bohr and � = 89) exhibit very similar behaviour. Figure 3
shows  Etot for both fcc and bcc structure. In addition, we show the structural energy
difference  Efcc−bcc =  Efcc −  Ebcc. While the changes in structural energy are smaller
than the errors in the individual fcc and bcc total energies, reasonable convergence is not
reached until lmax � 10, and the errors associated with lmax = 3 and 4 are of the order of 50%.
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Figure 3. Convergence properties of  Etot for fcc (circles) and bcc (squares), and the structural
energy Efcc − Ebcc (triangles) for Cu. The fcc (bcc) lattice parameter is taken to be a = 6.76
(5.37) Bohr, � = 87 (89), and the MT approximation is used.

In all of the above, it should be stressed that the calculations are for a spherical approx-
imation to the crystal potential, namely, the MT approximation. Similar results are obtained
for the other often-used spherical approximation, namely the ASA. In figure 4 we show results
for the ASA analogous to those of figure 2 for the MT approximation. The overall scale of the
convergence behaviour of the ASA is the same as that for the MT approximation. However, it
is generally of the opposite sign and is monotonic.

Of particular note is the convergence behaviour of N . For the ASA, the error in the
integrated density of states increases uniformly from lmax = 3 whilst for the MT approx-
imation the error first increases at lmax = 4 and then decreases uniformly. The behaviour of
the ASA is what one would expect on the basis of simple arguments and the behaviour of the
underlying phase shifts. Recall that  N is calculated with respect to the lmax = 3 results.
For Cu, the phase shifts for lmax > 3 are small but positive. From the Freidel sum rule, one
would expect these higher l-components to contribute a positive density of states, leading to
an increase in the integrated density of states. A corollary of this is a monotonic decrease
in the true Fermi energy, which is also observed. Clearly, the MT results do not follow the
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Figure 4. Convergence properties of  Etot ,  εF , and  N as functions of the maximum angular
momentum cut-off lmax . Calculations for lmax = 3 are used as a reference. The results are for fcc
Cu, a = 6.76 Bohr, the ASA, and � = 87.

same behaviour beyond lmax = 4. In the MT approximation, the density of states is calculated
by integrating the Green’s function (equation (1)) over the Voronoi polyhedron rather than
the atomic sphere. In a cubic system, this results in off-diagonal contributions to the density
of states, coupling, for example, the l = 0 to l = 4 and l = 6 components. Contrary to
expectation for diagonal elements of the density of states which we have argued above should
be small and positive for large values of l, these off-diagonal contributions can have either
sign. It is these off-diagonal elements that give rise to the different behaviour in the MT case.

So far we have studied the convergence properties for a fixed lattice parameter. Of more
significance is how the convergence of physical quantities such as the ground-state energy
and equilibrium lattice parameter are affected. In figure 5, we show results for total energy
as a function of lattice spacing for 3 � lmax � 12. The results are for fcc copper in the MT
approximation. While there are large differences between the curves for lmax = 3, 4, and 8,
the curves for lmax = 8 and 12 are essentially identical.

Equilibrium lattice parameters a0, ground-state total energies E0, and bulk moduli B0

corresponding to the data shown in figure 5 are presented in table 2.

Table 2. Equilibrium lattice constant a0, bulk modulus B0, and total energy E0 for fcc and bcc
copper at several values of lmax . Calculations use the MT approximation and � = 87 (89) for
fcc (bcc) structure.

fcc bcc

a0 B0 E0 a0 B0 E0

lmax (Bohr) (Mbar) (Ryd) (Bohr) (Mbar) (Ryd)

3 6.764 1.672 −3275.76616 5.383 1.635 −3275.76505
4 6.727 1.716 −3275.77162 5.345 1.689 −3275.76916
8 6.749 1.664 −3275.76430 5.360 1.646 −3275.76288

12 6.747 1.604 −3275.76439 5.361 1.645 −3275.76283
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Figure 5. Total energies calculated at four values of lmax as functions of the lattice parameter for
fcc copper (MT approximation).

The equilibrium quantities for fcc and bcc lattices are converged at lmax = 8. For the fcc
structure the errors in energy and lattice constant are of the order of 0.09 mRyd and 0.002 Bohr
while the bulk modulus is converged to within 0.06 Mbar. The corresponding errors are
somewhat smaller for the bcc structure. Note that the lmax = 4 results exhibit the largest error
with respect to the fully converged lmax = 12 values.

4. Conclusions

The above studies show that KKR Green’s function calculations do not converge as rapidly,
with the angular momentum, as has generally been assumed, even for the case of spherical
approximations to the crystal potential. A high level of convergence (<0.04 mRyd) appears to
be attained at lmax � 12. However, accurate total energies, lattice constants, and bulk moduli
can be obtained at lmax = 8. For this lmax , the errors in energy, lattice constant, and bulk
modulus are of the order of 0.1 mRyd, 0.002 Bohr, and 0.1 Mbar per atom in the fcc structure
and are slightly smaller for the bcc structure. Obviously, even this degree of accuracy may not
be necessary in some cases. The difference between the total energy calculated at lmax = 8
and the total energy calculated at the conventional lmax = 3 is about 2 mRyd for both fcc and
bcc structures at the lattice parameters tested. Total energies for lmax = 4 show the largest
error (about 7 mRyd) compared to those obtained at lmax = 8.

Since the calculations performed here utilize spherical approximations to the cell potential,
the question may arise of whether the above results will remain valid for general shape
potentials. In a recent study, Zeller et al calculate total energies as functions of lattice constant
for metallic copper and aluminium at lmax = 4, 6, and 8 using the full-potential TB KKR
method [7]. The energy curves for aluminium, shown in their figure 1, exhibit behaviour
similar to those in figure 5, i.e., the total energy at lmax = 4 shows underbinding compared
with that obtained at lmax = 8 by ∼5–6 mRyd. This is in good agreement with the MT results
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presented here. Thus it appears that the large lmax required to obtain highly converged energies,
etc, does not result from the non-spherical terms in the potential, t-matrices, etc, but is intrinsic
to MST even for the case of spherical approximations.

Before closing, it is worthwhile to comment on how the findings in this paper affect the
standing of KKR-based calculations in general. Clearly, this depends on the details of how
they are performed. If the single-centre expansion is used throughout, then the considerations
detailed here apply. If the Fermi energy is determined from the Lloyd formula and the single-
centre expansion is used for the charge density, then the reliability of the results depends on
how the resulting charge discrepancy is treated. For MT calculations this is easily hidden
by assigning it to the interstitial region. For ASA and full-potential calculations, no such
option exists.

Recently, a new version of the LMTO method has been proposed [14,15] that continues to
use a spherical approximation to the single-site potential while giving a good approximation
to full-potential calculations. In this method, which closely resembles the TB KKR method,
the single scatterer is extended even beyond the ASA radius [16]. Given this, it is clear that
close attention should be paid to the l-convergence properties of this new method.
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